对于长距离行驶工况而言,合成燃料是一类充满吸引力的可用于降低CO2排放的解决方案。除了将甲醇作为单一燃料直接使用之外,也可考虑使用甲醇、乙醇、正丁醇和异丁醇与传统燃料的混合燃料作为内燃机燃料。为此,德国亚琛工业大学已在单缸汽油机上通过燃烧过程研究这些混合燃料和纯醇类燃料提高效率和降低有害物排放的潜力。
1 燃料具有不增加排放的自由度
巴黎气候保护协议规定了2015年降低CO2排放的目标,并在以后的几十年中应逐步显著降低CO2排放。交通领域对于有效实现能源转型起着决定性的作用,其所消耗的能源约占德国总能源的20%。即使通过减轻质量、提高发动机效率或者加速汽车电气化和混合动力化,由此持续不断地改善能源的利用效率,但是与1990年相比,温室气体排放并未得以显著减少,而且短期内的交通流量甚至还会进一步增加,因此降低CO2排放仍是举步维艰。在封闭碳循环中借助于可再生能源制取燃料的情况下,液态合成燃料为降低交通领域CO2排放提供了广阔的前景。除了长期降低下一代内燃机排放之外,此类燃料作为混合燃料的组成成分在现有公司车队中已能显著降低CO2、NOx和颗粒排放。
2 燃料特性
为了研究液态可再生燃料在汽油机轿车上的适用性,选择了3种醇类燃料作为混合燃料的组成成分:甲醇、乙醇和丁醇,而将研究法辛烷值(RON)为94的不含氧的汽油作为基础燃料。这些醇类的纯组分以3%~40%的份额与基础燃料进行混合,从而总共确定了10种混合燃料,其特性列于图1中,其目标是用这10种混合燃料需满足RON>101的要求。E20和E25为来自巴西的含乙醇燃料。M15E5是一种由ENI和FCA公司开发的A20燃料,它含有15%甲烷和5%乙醇。所有这10种混合燃料的低热值约为39 MJ/kg,且几乎保持恒定不变。与基础燃料相比,纯粹的醇类呈现出明显较低的热值,这归因于较高的含氧量,而甲醇、乙醇和正丁醇和异丁醇却具有比基础燃料明显更高的抗爆性。正是在高负荷工况下,较高的蒸发焓起到了显著作用,与基础燃料相比,2种丁醇组分的蒸发焓要高出2倍,乙醇的蒸发焓要高出3倍,而甲醇的蒸发焓甚至要高出6倍,但是在冷起动状况下较高的蒸发焓就显得不胜其弊了。无论是甲醇和乙醇还是正丁醇和异丁醇都具有比基础燃料更高的空气需求、更低的比热值、更低的蒸汽压和更高的蒸发焓,在较低的进气空气温度和冷起动条件下会导致不良的混合气形成。此外,对于选择混合组分而言,沸点温度是一个重要的需求,因为沸点温度超过100 ℃可能使燃料掺入机油而导致机油稀释,因此需确保在90℃的运行温度下掺入到机油中的燃料能充分蒸发,沸点温度为118 ℃的正丁醇组分不进行试验,而沸点温度为108 ℃的异丁醇与基础燃料的混合比例至多为40%。
3 试验研究载体
在单缸试验发动机上进行基础试验研究。单缸试验发动机的技术数据列于表1。单缸试验发动机上的增压是由外部增压机组实现的,完全能达到0.35 MPa的最大增压压力。借助于排气管路中的一个背压阀,在节流运行时压力能被调节到0.1 013MPa,而在增压运行时排气歧管中的压力被提升到与进气管中相近的数值。进气空气温度被调节至25 ℃。这种单缸试验发动机能通过活塞的几何形状被调整到不同的压缩比。为了利用含醇燃料的高抗爆性并达到最高的发动机效率,将压缩比设定为13.0。坚固的曲柄连杆机构允许气缸最高平均压力高达17.0 MPa,由此考虑到了所期望的高峰值压力,特别是考虑到了在使用含醇燃料时应具有足够的安全性。此外,这种单缸试验发动机具有分开的进气道,其能达到较高的滚流强度,从而获得良好的混合气形成。火花塞及喷油器均布置在气缸中央,其中火花塞布置于排气门之间,而喷油器则布置于进气门之间。
在直喷式单缸试验发动机上已对10种含有甲醇、乙醇、正丁醇和异丁醇的汽油机混合燃料以及纯甲醇进行了热力学试验研究。所进行的试验研究表明,甲醇提供了提高效率和降低NOx排放的巨大潜力。在高负荷时,与RON98基准燃料相比,使用混合燃料在相同的压缩比情况下能使效率提高12.6%,而甲醇甚至能使效率提高达23.5%。甲醇将较高的蒸发焓与较高的层状火焰传播速度相结合,能在高负荷和冷起动条件下提高抗爆性和燃烧稳定性。含有丁醇的混合燃料的热值比甲醇和乙醇的热值更高,当然其抗爆性仍略逊一筹。此外,较高的沸点温度会提高冷起动条件时的HC排放。鉴于EGR兼容性和稀薄燃烧过程,期望使用混合燃料和纯组分燃料以进一步提高效率和降低废气排放。在使用甲醇运行时,因其较好的抗爆性而有望进一步提高压缩比。除了在NOx排放方面的优势之外,随着醇类含量的增加,HC排放仍具有挑战,特别是在冷起动的工况下。
丁醇供应哪家好?不妨试试上海九麟,大品牌老企业,忠诚服务每个客户!